Кто должен был быть в первых рядах приемки модели предыдущего кандидата и задавать ему каверзные вопросы?
Верно, речь пойдет про аналитиков
Несколько лет назад меня пригласили прочитать лекцию правлению одного крупного промышленного банка дружественной республики бывшего союза.
Задача была в духе как наладить дата-функцию так чтобы побыстрее с этого заработать, основной упор на кейсы, причем, кроме рисковых и бизнесовых, обсудили даже комплаенс и казну.
В банках вообще есть где развернуться в плане ML )
Много было вопросов по кейсам, но особенно живой интерес возник когда я сказал что аналитики им не нужны – мол, все равно вы не умеете ими пользоваться – что поделать, люблю чуть-чуть набросить
🤓.
Как я вижу работу дата-аналитика:
▪️ дизайн экспериментов / пост-эксперименты (блокинг, матчинг, каузальные выводы)
▪️ кейс-менеджмент
▪️ построение дерева метрик, исследование взаимного влияния метрик друг на друга
▪️ поиск прокси-метрик и прокси-событий
▪️ фин. модели для отмахивания от финансистов и аудиторов
Истории с прототипированием витрин, проверками данных, визуализации, первичную бизнес-валидацию – оставляю за DS, это обязательная и очень большая часть его работы
Истории с сегментацией / кластеризацией клиентской базы – свое отношение к таким “задачам” я
в одном из первых постов высказал.
Как чаще всего используют аналитиков в компаниях, в которых продуктовая культура, скажем так, не особенно вызрела?
▪️ черная работа, которую не хочет делать DS / MLE / PO и остальные.
▪️ ad-hoc по велению левой пятки PO / CPO / любого другого манагера / канальи из соседнего отдела / управления / блока / департамента и пр. И суету создает и ЧСВ манагера растит.
И вот последнее отнимает 90-95% времени аналитиков.
Как с этим бороться? Обычно просто частотные запросы оформляют в дэш и берут на поддержку.
Еще были попытки text2sql, но тогда контекста моделей не хватало (да ис. бизнес-глоссариями было не так ровно как хотелось бы)
А как еще? (здесь каюсь, хорошая мысля приходит опосля – хоть я и боролся с ad-hoc, формализовать догадался только лишь потом):
▪️ Требовать дерево решений: вот насчитаю вам, уважаемый заказчик, требуемые показатели. Какие управленческие решения при каких значениях показателей вы сможете принять? Или просто посмотрите и огорчитесь?
▪️ Выдавать доступы к песочницам почти всем – дать им в руки BI с конструктором
Достаточно долго я так жил и работал, пока не так давно не возник следующий диалог с камрадом:
“
– Вы сколько на моделях в этом крупном направлении за год заработали?
– Ну, xxx млн.
– А у нас (компания Y) аналитики (!) за месяц столько же
– ???
“
Итак, суть кейса:
аналитики как обычно генерили свои смешные гипотезы, и в результате проверки одной из них выяснилось следующее: пару лет назад компания Y привлекала клиентов, предлагая им трехмесячную скидку. Аналитики выяснили что разрабы накосячили и скидки не отключились через 3 мес (!). То есть все такие клиенты до сих получают услуги по тем льготным тарифам. Дальше они взяли скоры от модели оттока и начали самым лояльным по этим скорам скидку отменять. Потихоньку, не сразу все базу.
Конечно, без DS они не обошлись (модель оттока все-таки наша), но сам факт!
В итоге мнение о дата-аналитиках и их полезности я сильно поменял.
☺️Если у вас прикольные кейсы файндингов дата-аналитиков -- не держите в себе, поделитесь, пожалуйста в комментариях