В комментариях к
этому посту попросили поделиться ссылками на антифрод, их есть у меня
Прям в цельную картинку вместе они собраны в курсе ML в бизнесе, но здесь поделюсь кусочками, из которых она состоит.
А для совсем начинающих –
хендбук
Как вообще устроен антифрод (на примере фин. мониторинга):
1. Правила (известные схемы, например из профильных обнальных тг-чатов -- для обнала: распыление, слом назначения платежа, вексели, слом ндс, транзит и пр) и экспертные модели (регрессии на известных фичах -- доли контрагентов, коэффициента налоговой нагрузки, корп карты, учредитель - подставное лицо и пр.). Известные фичи "ломаются" уже со стороны нарушителя -- например, КНН можно увеличить отправляя ошибочные платежки в налоговую и получая возвраты
2. Модели (supervised модели, построенные по отловленным правилами и руками кейсам). Здесь тоже работает PseudoLabelling. Но и фродеры не стоят на месте, на это намекал в самом первом начале канала
https://t.center/datarascals/3 Кейс-менеджмент и эксперты (разбор найденных примеров, новых схем, мотивированное суждение). Разбор кейса может занимать, например, 2 недели, включая запрос документов от клиента
3. Exploration -- unsupervised -- outlier detection -- наша задача найти несколько десятков примеров, передать их на разбор, сделать supervised модель
4. Мониторинг качества работы и схем и отдельных фичей, симуляции новых схем атак
Мониторинг мошеннических заявок на кредит, определение компаний, искажающих финансовую отчетность -- все это тоже про антифрод.
На Forex вообще фродовыми считаются клиенты, которые выживают и выводят деньги.
Таргетом может быть как компания / физик так и конкретная сомнительная транзакция.
Итак, сами материалы
Поиск аномалий в табличках (для того чтобы быстро разные алгоритмы перебрать):
1.
PYOD – база, даже вариационный автоэнкодер включили (вообще автоэкнодеры в разных формах полезны в этих задачах)
2.
PYTOD – ускоренная версия (за счет использования GPU) – вообще большинство классических алгоритмов редко применяют из-за того что они очень медленные, мне нравится Isolation Forest из всех, но перебирать всегда приходится несколько
Здесь важно сделать отступление – что для многих классических алгоритмов придется как-то умозрительно задать ожидаемую долю аномалий, что не очень удобно. По факту нам интереснее ранжирование на более аномальные и менее – а дальше сколько мы возьмем будет зависеть от цены ошибки в каждом кейсе и мощности офицеров чтобы эти кейсы руками разобрать и подтвердить.
Поиск аномалий на транзакциях:
1.
PYGOD– смотрим на задачу как на поиск аномалий в графах (и то, насколько аномалия должна быть более структурной чем контекстной – необучаемый параметр в лоссе), здесь в основном графовые автоэнкодеры
Но это прям затравочка, тема популярная, плюс графы меняются по времени (и структура и свойства вершин / ребер), даже на последнем NIPS (а это декабрь) показали новый алгоритм поиска аномалий на графах UniGAD. И еще на
KDD’24 (сам еще не успел прочесть читал, но denoising диффузионка звучит как что-то интересное)
Подборка
актуальных статей по теме 2.
PTLS от Sber AI лабы сначала ssl-эмбеддим транзакции, потом закидываем в табличные методы
Если уже нашли и даже добились какой-то разметки, но единичек не очень много сотни), то помогает
pseudolabelling– строите график того как метрика (обычно recall) зависит от того, с какого порога предикты единичек первой моделью досыпать в трейн второй. Выбираете порог, максимизирующий recall -- не панацея конечно, но до +10% полноты получалось выжимать.
Ну и supervised – здесь относительно понятно, кроме того на какой event rate калиброваться, да и надо ли )