Таким образом, CFM-CS лучше работает для ветвей с похожей структурой, а SEME-fusion предпочтителен в ситуациях SEME-регионов или для сильно различающихся по структуре ветвей.
Так как эти два подхода ортогональны, авторы реализовали специальный
проход по модулям в LLVM, применяющий к регионам с ветвлением обе трансформации и выбирающий лучшую.
[1] B. Coutinho, D. Sampaio, F. M. Q. Pereira, and W. Meira Jr. 2011. Divergence Analysis and Optimizations. In 2011 International Conference on Parallel Architectures and Compilation Techniques. 320–329.
[2] Saumya, Charitha, Kirshanthan Sundararajah, and Milind Kulkarni. "DARM: Control-Flow Melding for SIMT Thread Divergence Reduction--Extended Version." arXiv preprint arXiv:2107.05681 (2021).
[3]
https://en.wikipedia.org/wiki/Sequence_alignment
[4] Rocha, Rodrigo CO, et al. "HyFM: Function merging for free." Proceedings of the 22nd ACM SIGPLAN/SIGBED International Conference on Languages, Compilers, and Tools for Embedded Systems. 2021.
#llvm #function_merging #optimization #branch_merging #code_size_reduction