Смотреть в Telegram
Data Science Archive
Forwarded from
Data Science Archive
(
小熊猫
)
说到特征降维/选择的问题,大部分EDA的套路都是从model训练的loss来判断feature importance。其实有一个简单易行而且很有效的办法是在CV里面用做feature permutation,对原始特征shuffle得到shadow(也可以加一些噪音),在通过zscore比较两者差异来判断importance,不断遍历筛选。在ESLII中593页有提到这个办法。R里面有一个包Boruta可以做这件事,py也有:
https://github.com/scikit-learn-contrib/boruta_py
GitHub
GitHub - scikit-learn-contrib/boruta_py: Python implementations of the Boruta all-relevant feature selection method.
Python implementations of the Boruta all-relevant feature selection method. - scikit-learn-contrib/boruta_py
Поделиться
Love Center - Dating, Friends & Matches, NY, LA, Dubai, Global
Бот для знакомств
Запустить