ИИ как зеркало биологии
Когда нейросети обучаются различать изображения, они, похоже, повторяют стратегии, которые природа совершенствовала миллионы лет. Недавнее исследование показало, что один из ключевых механизмов обработки изображений в ИИ — частотный детектор — был обнаружен в зрительной коре мышей. Буквально, нейронные сети и мозг сходятся не только по фукции, но и по структуре. Это открытие не просто забавное совпадение, а ключ к пониманию того, как природа и искусственный интеллект сходятся в подходах к решению сложных задач визуального восприятия.
Нейроны, отвечающие за обработку высоких и низких частот, были описаны в статье
Distill для искусственных {
приходится уточнять теперь} нейросетей. Эти
частотные детекторы распознают переходы между высокими и низкими пространственными частотами. В глубоких свёрточных сетях, например, таких как
Inception V1, активации нейронов можно представить как результат преобразований Фурье, где разные слои сети извлекают особенности изображения, подобные анализу частотных компонентов. Детекторы высоких частот фокусируются на деталях, а низкочастотные нейроны — на общих формах и контурах.
Биологические эксперименты показали, что у мышей зрительная кора обрабатывает визуальные стимулы схожим образом. Это подтверждает гипотезу о том, что мозг использует механизмы, аналогичные математическим преобразованиям, которые применяются в глубоких нейронных сетях, что ещё раз подчеркивает универсальность принципов обработки информации.
Почему это важно? Специалисты МЛ знают, что преобразование Фурье и частотные детекторы — это не просто математика, а фундаментальные механизмы для разложения сложных данных на понятные компоненты. Открытие аналогичного подхода в мозге млекопитающих доказывает, что нейронные сети не просто приближаются к биологическим системам, они могут отражать сами принципы их работы - и помочь нам понять, как же, в конце-то концов, работает наш мозг.
🧪Distill. Частотные детекторы в нейросетях
🎹 Исследование частотной обработки в мозге мышей