View in Telegram
[Anthropic RL-CAI & RLAIF] Constitutional AI: Harmlessness from AI Feedback Yuntao Bai, Saurav Kadavath, Sandipan Kundu, Amanda Askell, Jackson Kernion, Andy Jones, Anna Chen, Anna Goldie, Azalia Mirhoseini, Cameron McKinnon, Carol Chen, Catherine Olsson, Christopher Olah, Danny Hernandez, Dawn Drain, Deep Ganguli, Dustin Li, Eli Tran-Johnson, Ethan Perez, Jamie Kerr, Jared Mueller, Jeffrey Ladish, Joshua Landau, Kamal Ndousse, Kamile Lukosuite, Liane Lovitt, Michael Sellitto, Nelson Elhage, Nicholas Schiefer, Noemi Mercado, Nova DasSarma, Robert Lasenby, Robin Larson, Sam Ringer, Scott Johnston, Shauna Kravec, Sheer El Showk, Stanislav Fort, Tamera Lanham, Timothy Telleen-Lawton, Tom Conerly, Tom Henighan, Tristan Hume, Samuel R. Bowman, Zac Hatfield-Dodds, Ben Mann, Dario Amodei, Nicholas Joseph, Sam McCandlish, Tom Brown, Jared Kaplan Статья: https://arxiv.org/abs/2212.08073 Репа с допматериалами: https://github.com/anthropics/ConstitutionalHarmlessnessPaper Twitter-thread: https://twitter.com/AnthropicAI/status/1603791161419698181 Ну и нельзя конечно не написать про основанный выходцами из OpenAI (среди них, например, бывший там VP of Research, Dario Amodei или первый автор работы про GPT-3 Tom Brown) Anthropic, у которого есть свой пока не выпущенный наружу чатбот/языковая модель Claude, тем более, что недавно Гугл в них сильно вложился (https://www.theverge.com/2023/2/3/23584540/google-anthropic-investment-300-million-openai-chatgpt-rival-claude). Anthropic активно использовал RLHF (https://t.center/gonzo_ML/1277) в своей предыдущей работе “Training a Helpful and Harmless Assistant with Reinforcement Learning from Human Feedback” (https://arxiv.org/abs/2204.05862), а теперь они перешли к его замене под названием RLAIF (RL from AI Feedback) и продвигают свой подход под названием Constitutional AI. Глобальная идея в том, что хочется сохранять свойство системы быть helpful, honest, и harmless даже когда её способности превышают человеческие, и для этого хорошо бы иметь техники, не полагающиеся на людей, чтобы систему можно было тестировать и улучшать автоматически. При этом хочется иметь возможность закодировать желаемое поведение в простой и прозрачной форме, а это позволило бы лучше понимать принятие решений AI. Звучит сингулярненько, стоит копнуть поглубже. Overview Авторы используют термин Scaling Supervision для техник, позволяющих людям более эффективно надзирать (в смысле supervise) за AI с малым количеством высококачественного человеческого фидбека (который, конечно, дорог). А в некоторых случаях машины и так уже лучше людей (и таких кейсов будет только больше), и за такими тоже надо научиться приглядывать, и scaling supervision может помочь. RLHF уже по сути сделал шаг в этом направлении, потому что там сигнал оценки приходит не от человека, а от обученной на человеческих предпочтениях reward model. Но RLHF всё равно использует десятки тысяч человеческих оценок, а хочется попробовать предельный вариант без них. Вместо них файнтюнить AI модели на предмет безвредности (harmless) планируется с помощью конституции, содержащей порядка десятка простых принципов, выраженных человеческим языком. Кроме того все эти десятки тысяч человеческих оценок не позволяют пролить свет на суть training objective, потому что это сложно понять и суммаризовать. И как мы знаем, также это не защищает от Goal misgeneralization (https://t.center/gonzo_ML/1160). Хочется прозрачности. В предыдущей работе Anthropic про RLHF было показано, что есть серьёзный конфликт между полезностью (helpfulness) и безвредностью (harmlessness), что проявляется, например, в запросах к боту дать рецепт делания какой-нибудь мерзопакости. Там агент уходил по таким запросам в уклончивые ответы, потому что такое поведение вознаграждалось краудворкерами. Здесь хочется сделать, чтобы бот в таких случаях просто отказывался давать ответ, объясняя, почему он так поступает, без всякого увиливания.
Love Center - Dating, Friends & Matches, NY, LA, Dubai, Global
Love Center - Dating, Friends & Matches, NY, LA, Dubai, Global
Find friends or serious relationships easily