View in Telegram
#статистика_для_котиков Разбросали тут свои данные... Привет, коллега! В прошлый раз мы говорили об описательной статистике и мерах центральной тенденции. И продолжая эту тему сегодняшний пост про меры разброса. На графиках разброс данных чаще всего отражается с помощью планок погрешностей или, как их ещё называют, усов. Мне хотелось бы оговорить одну важную вещь: меры разброса выполняют именно описательную функцию, то есть они призваны показать читателю, какие у вас были данные. А данные бывают очень разные 🖤🤍❤️, какие-то более однородное, какие-то менее и разбросы тоже будут отличаться. Но я знаю, что многие исследователи выбирают не более репрезентативный вариант представления размаха, а такой, чтобы усы были как можно короче. Так вот, для поиска различий размер усов не важен. Важен размер эффекта, мощность критерия и величина p и да, на них будет влиять разброс данных. Но от того, что ты нарисуешь усишки покороче, ситуация не изменится. Так что рисуй репрезентативные усы и не пугайся их размера 🐈‍⬛ Зачем вообще нужны меры разброса. Вспомним лабу из предыдущего поста (лаба 1). Там зарплата завлаба была 500к рублей, внс 60к, мнс 40к и два лаборанта получали по 10к. Теперь представим, что в соседнем НИИ есть такая же лаба (лаба 2), но там завлаб получает 200к, внс 180к, мнс 120к и лаборанты по 60к рублей. Среднее значение зарплат будет одинаковым, 124 тысячи, для отчётов самое то. Но мы, конечно, уже умные и знаем, что можно посчитать медиану и обнаружить некоторое неравенство условий 🤔 И неравенство заключается как раз в разбросе. Как его описывают 🟢Размах. Это разница между максимальным и минимальным значением. В лабе 1 он составит 490 тысяч, а в лабе 2 - 140. Разница очевидна. В целом, в качестве усов размах используется редко, но лично я рекомендую его в первую очередь для представления таких дискретных данных как баллы, если градаций не очень много. 🟢Дисперсия. Это средний квадрат отклонения значений выборки от её среднего значения и по сути характеризует как далеко от своего среднего находятся данные. Дисперсия измеряется в квадратных единицах, в нашем случае рубль в квадрате. Мало того, что величина странная, так и на одном графике с обычными рублями её не нарисуешь. Поэтому для планок погрешностей используют 🟢Стандартное (среднеквадратичное отклонение) отклонение - квадратный корень из дисперсии. В лабе 1 оно составит 211к рублей, а в лабе 2 всего 64к, то есть хорошо видно, что разброс данных в первом случае куда более значительный. В качестве усов стандартное отклонение отстраивается симметрично в обе стороны от среднего и в этом заключается его проблема. Распределение выборок-то не всегда симметрично и для таких случаев использование стандартного отклонения будет некорректным, поскольку оно не выполняет главную функцию: не описывает данные и их распределение. Для дискретных данных стандартное отклонение также нельзя использовать, так как получится бред вроде 1.5±0,34 землекопа 😒 🟢Процентили. N процентиль это такое число, при котором N % значений выборки будет меньше его. Чаще всего используют 5 и 95 процентиль в качестве отрицательной и положительной планки погрешности, реже 10 и 90, 1 и 99, 2.5 и 97.5. На малых выборках процентиль не используется, его просто не из чего считать 🤷‍♂️ 🟢Квантили. По сути тоже самое, что процентиль, но в долях от 1. 🟢Квартили. Делят выборку на 4 части, то есть 1 квартиль отсекает 25% выборки, 2 квартиль - 50 (и по сути это медиана), 3 - 75%. Разница между 3 и 1 квартилью называется интерквартильный размах, а сами 1 и 3 квартиль чаще всего и используются в качестве усов для несимметричных и дискретных данных. Квартили не так чувствительны к выбросам, как стандартное отклонение. 〰️〰️ Так что запоминай: если данные непрерывные, распределены симметрично, то можешь использовать среднее и стандартное отклонение. Во всех остальных случаях лучше медиану и квартили, реже другие перечисленные меры разброса. А если мы посмотрим на наши лабы, то корректная характеристика такая: зарплата в лабе 1 40[10;45] тысяч рублей, а в лабе 2 - 120[60;135]. В какую пойдёшь работать?
Please open Telegram to view this post
VIEW IN TELEGRAM
Telegram Center
Telegram Center
Channel