Попытался прикинуть в режиме блиц, что такого важного и интересного произошло в AI в этом году. Ниже результат примерно десятиминутного размышления, что быстро всплыло из памяти. Плюс ещё полчаса-час на то, чтобы это раскрыть. Наверняка что-то важное забыл и если бы я потратил больше test time compute, наверное, результат был бы точнее, но в таком режиме тоже интересно.
Итак, мой список, не то чтобы по важности, просто по порядку вспоминания.
1. Test-time computeПримерно с o1 (
https://openai.com/index/learning-to-reason-with-llms/) открылась эра test-time compute, появилось новое измерение, по которому можно скейлить модели.
Ну как появилось, в принципе его следы и раньше можно найти. Те же варианты прогнать CNN на нескольких аугментациях и усреднить результат, или там Tailoring (
https://t.center/gonzo_ML/392), оно тоже сюда. Но сейчас прям sputnik moment, особенно с o3 (
https://t.center/gonzo_ML/3104). Есть и у других игроков что-то из этой серии, Gemini 2.0 Flash Thinking Mode (
https://ai.google.dev/gemini-api/docs/thinking-mode) или QwQ (
https://qwenlm.github.io/blog/qwq-32b-preview/).
Следующий год будет сильно про это.
2. SSM идут в массы.За год появилось много новых SSM и SSM-Transformer гибридов (
https://t.center/gonzo_ML/2919), и история продолжает развиваться. Из свежего, например, Bamba (
https://huggingface.co/blog/bamba) или Falcon3-Mamba (
https://huggingface.co/blog/falcon3).
3. Реальная конкуренция в мире LLMЕсли год-два назад была примерно одна лучшая LLM -- от OpenAI, то теперь есть как минимум три топовых коммерческих: от Anthropic, OpenAI, Google, и несколько хороших открытых: Llama, Gemma, Qwen, да и ещё что-то наверное можно добавить. В повседневных делах у меня моделью #1 стал Claude 3.5 Sonnet, он вытеснил модели OpenAI как точку входа.
4. LLM теперь мультимодальныеБольшинство топовых LLM уже вовсю мультимодальные, принимают на вход не только текст, но и звук с картинками. GPT, Gemini, Claude, Llama, ... все умеют что-то кроме текста. Тихо и без революций это просто стало реальностью.
5. LLM для написания кода стали реально полезныГенерация кода за последний год очень прокачалась, с помощью моделей можно написать код гораздо быстрее. Я активно пользуюсь этим для генерации разного типового кода, например, для визуализации или обработки данных, это экономит мне кучу времени. Ради эксперимента также написал Flutter приложение с питоновским бэкендом за выходные, флаттера я перед этим не знал вообще. Без Claude/Copilot/Gemini хз сколько бы я это делал, точно не выходные.
Неидеально, в некоторых случаях не срабатывает, как мне нужно, но во многих срабатывает. После VSCode + Copilot или Colab со встроенным Gemini работать в Kaggle ноутбуке без этого вообще уныло, как без руки, начинаешь остро чувствовать потерянное время.
В 2017-м написал статью в Форбс про то, что "программисты в опасносте" (
https://www.forbes.ru/tehnologii/341535-mashiny-vmesto-inzhenerov-pochemu-iskusstvennyy-intellekt-doberetsya-i-do), ну вот мы приближаемся.
С другой стороны прямо сейчас происходит большое разделение. Кто умел программировать, становится в разы и на порядки продуктивнее, а кто не умел -- имеет шансы и не стать вообще. "Богатые богатеют".
6. Генерация видео на подходеSora очень долго ехала от анонса до доступности, но зато за это время появилось сколько-то альтернативных наработок. Если в момент анонса OpenAI был примерно одним и единственным лидером, то сейчас уже это не так и мир многополярен.
7. Нобели за нейросетиПриятно.
Кроме того, нейросети уже вовсю меняют науку. Не то, чтобы это только в последний год происходило, но, кажется, количество понемногу переходит в качество.
8. Открытые модели рулятМне всегда казалось, что опенсорс примерно года на полтора отстаёт от коммерческих LLM, ну и в принципе, наверное, оно где-то так и есть, если смотреть на доступные способности там и там. Но всё равно, всё то, что появилось в опенсорсе (или просто в опен) продолжает удивлять -- новые ламы, джеммы и прочее разное намного лучше, чем всё что было ранее.
9. World models