View in Telegram
Доказательная медицина (ч.1., ч.2.) Первый подход к интерпретации результатов Итак, что из себя представляет статистическое доказательство и какие ограничения это порождает с чисто математической стороны? Для этого давайте посмотрим на очень типичный исследовательский сценарий. Для наглядности возьмём какой-нибудь непрерывный показатель – скажем, мы сравниваем снижение давления в результате назначения двух препаратов двум случайно распределённым группам пациентов – одной препарат А (красный), другой – препарат Б(синий). Как происходит их сравнение? Сначала оценивается характер распределения каждой из величин. в зависимости от того, параметрический он или нет, выбирается метод сравнения двух непрерывных величин. Далее, в зависимости от уровня значимости различий, делается вывод о том, имеет ли такое различие место в генеральной совокупности. В части собственно вычислительной медицина демонстрирует небыстрый, но устойчивый прогресс, особенно что касается тех публикаций, которые в дальнейшем формируют базу доказательной медицины. Посмотрим, однако, на неочевидную сторону вопроса, в которой зачастую совершается методическая ошибка. На графике, где по оси абсцисс отложен результат применения препарата, а по оси ординат – количество больных в исследуемой группе с таким уровнем расхождения, можно видеть, что оба параметра имеют довольно большую область перекрытия. Очевидно, в этой области значений существует немалый массив пациентов, которым препарат В помог лучше, чем препарат А, хотя в целом наглядная картина демонстрирует превосходство препарата А (что, однако, нуждается в проверке формальным статистическим инструментарием). Безусловно, анализ причин, по которой какой-то группе пациентов лучше могло бы помочь в целом менее эффективное лечение, является значимым элементом научного поиска в таких исследованиях; исследователи зачастую проводит анализ в подгруппах в т.ч. чтобы точнее описать портрет пациентов из «области перекрытия». В чём проблема с этими вполне очевидными ограничениями? В том, что они при трактовке результатов исчезают в первую очередь. «В группе пациентов препарат А в среднем показывает лучший эффект по сравнению с препаратом Б с определёнными уровнем доказательности и в определённом доверительном интервале» моментально превращается в «Препарат А эффективнее препарата Б». И это, пожалуй, первый значимый пример ошибочной трактовки результатов доказательных медицинских исследований, который виден, увы, на регулярной основе в СМИ и в профессиональной дискуссии. В следующий раз мы рассмотрим примеры ошибок, связанных с экстраполяцией результатов исследований.
Love Center
Love Center
Find friends or serious relationships easily