12 Essential Math Theories for AI
Understanding AI requires a foundation in core mathematical concepts. Here are twelve key theories that deepen your AI knowledge:
Curse of Dimensionality:
Challenges with high-dimensional data.
Law of Large Numbers:
Reliability improves with larger datasets.
Central Limit Theorem:
Sample means approach a normal distribution.
Bayes' Theorem:
Updates probabilities with new data.
Overfitting & Underfitting:
Finding balance in model complexity.
Gradient Descent:
Optimizes model performance.
Information Theory:
Efficient data compression.
Markov Decision Processes:
Models for decision-making.
Game Theory:
Insights on agent interactions.
Statistical Learning Theory:
Basis for prediction models.
Hebbian Theory:
Neural networks learning principles.
Convolution:
Image processing in AI.
Familiarity with these theories will greatly enhance understanding of AI development and its underlying principles. Each concept builds a foundation for advanced topics and applications.