🔹#توسعه_و_تحقیق_کار_ها
✅ یادگیری ماشین و مدلسازی بیزی در تحلیل علوم اعصاب، مدلهای آماری مختلفی برای تفسیر دادههای پیچیده و به دست آوردن بینشهای معنادار استفاده میشود. این مدلها را میتوان بهطور کلی به روشهای آمار کلاسیک و یادگیری ماشینی دستهبندی کرد که هر کدام اهداف مشخصی را در تحقیقات انجام میدهند.بخشهای زیر محبوبترین مدلهای آماری مورد استفاده در علوم اعصاب را تشریح میکند.
◀️آمار کلاسیک
آزمون فرضیه صفر: روشهای رایج مورد استفاده شامل آزمونهای t و ANOVA هستند که به تعیین اهمیت اثرات مشاهدهشده در دادههای تصویربرداری عصبی کمک میکنند.
🟣تجزیه و تحلیل رگرسیون: این روشها روابط بین متغیرها را ارزیابی میکنند و بینشی در مورد عملکرد و ساختار مغز ارائه میکنند.
◀️رویکردهای یادگیری ماشینی
یادگیری نظارت شده: تکنیکهایی مانند ماشینهای بردار پشتیبان (SVM)، درختهای تصمیمگیری و شبکههای عصبی اغلب برای کارهای طبقهبندی در علوم اعصاب استفاده میشوند.
🟣مدلسازی بیزی: این رویکرد عدم قطعیت را تخمین میزند و مستقیماً ویژگیهایی را از مجموعه دادهها استنباط میکند و آن را برای درک پیشرفت بیماری ارزشمند میسازد.
✅ در حالی که آمار کلاسیک چارچوبی قوی برای آزمایش فرضیهها ارائه میکند، یادگیری ماشینی انعطافپذیری و سازگاری را در تجزیه و تحلیل دادههای با ابعاد بالا ارائه میدهد که نشاندهنده رابطه مکمل بین این دو روش در تحقیقات علوم اعصاب است.
📎مقالهی بررسی ابزارهای آمار زیستی رایج در علوم اعصاب به بررسی جمعبندی رویکردهای مختلف در بیماریهای گوناگون میپردازد و امیدوار است که نقش بالقوه ابزارهای آمار زیستی در علوم اعصاب را معرفی کند.
⌛ یادگیری ماشین به عنوان یک روش برای ساخت مدلها و شناسایی همبستگیها میان ویژگیهای دادهها شناخته میشود. در این زمینه، تکنیکهایی مانند رگرسیون لجستیک، درختهای تصمیم، ماشینهای بردار پشتیبان (SVM)، جنگل تصادفی (RF) و شبکههای عصبی به عنوان رویکردهای رایج مورد استفاده قرار میگیرند. همچنین، مدلسازی بیزی به دلیل تواناییاش در برآورد ویژگیها بهطور مستقیم از مجموعه دادهها و نه از طریق توزیع نمونهبرداری، به عنوان روشی برای مدیریت عدم قطعیت مدلها مطرح است. این روشها در تشخیص و پیشرفت بیماریها در علوم اعصاب بسیار کارآمد بودهاند.
#️⃣#IDSchools
#️⃣#IDS
#️⃣#IDS_Math
📱@IDSchools
📱@IDS_Math